RpoB Processing
rpoB_analysis
Cody Glickman
11/18/2018
Purpose
This pipeline details the steps to process rpoB sequencing reads into a format for BLAST processing and subsequent analysis. The workflow details the steps needed to process the data from raw reads to taxonomic identification. This pipeline requires additional tools detailed below and was tested on a MAC OS Mohave. More information can be found at my GitHub
Requirements
BLAST // NR Database // seqkit // vsearch // Concatenation Script
Concatenate rpoB Reads
The chunk below contains commands executed on the command line. The script concatenate_reads should be located in the folder above the paired unzipped fasta files.
## Unzip paired end reads
for f in folder/*; do gzip -d $f; done;
## Make directory and move zipped folders
mkdir -p ZippedReads
for f in folder/*.gz; do mv $f ZippedReads/; done;
## Convert fastq to fasta
for f in folder/*; do seqkit fq2fa $f ${f%.*}.fasta; done;
## Run Concatenation
./concatenate_reads folder/ForwardReads.fasta folder/ReverseReads.fasta
We now have a concatenated read file seperating the reads by 10 N nucleotides since we know the rpoB primers do not overlap. Additional read processing can be done prior to this step to remove low quality reads and perform adapter trimming. This process was automatically performed during post sequencing processing on our sequencer.
Dereplicate and OTU Picking
We begin by dereplicating the individual files. Dereplication combines and counts sequences that match at 100% of the bases to reduce the number of comparisons downstream. Following deprelication we combined multiple reads to create our OTU table. In our dereplication command we rename clusters and singletons with the file identifier seperated by a period and then the cluster number.
## Dereplicate the concatenated fastas
for f in *.fasta; do vsearch --derep_fulllength $f --output derep_$f --sizeout --uc ${f%.*}.uc --relabel ${f%.*}. --fasta_width 0; done;
## Merged deprelicated fastas into a single file
cat derep_* > Combined.fasta
## Perform another round of dereplication on the full dataset
vsearch --derep_fulllength Combined.fasta --output derep.fasta --sizein --sizeout --uc combined.uc --fasta_width 0
## Perform Chimera Filter Denovo
vsearch --cluster_size derep.fasta --id 0.98 --sizein --sizeout --fasta_width 0 --centroids preclustered.fasta
vserch --uchime_denovo preclustered.fasta --sizein --sizeout --fasta_width 0 --nonchimeras nonchimeras.fasta
#Cluster for OTUs and print biom tables
vsearch --cluster_size nonchimeras.fasta --id 0.97 --sizein --sizeout --fasta_width 0 --uc clustered.uc --relabel OTU_ --centroids otus.fasta --otutabout otutab.txt --biomout otu.biom
BLAST OTUs to get taxanomic identities
The otu sequences can be found with otus.fasta and that sequence file can be BLAST against a custom rpoB Database or the NR database to establish sequence identity. I utilize -best_hit_score_edge options to limit return table. I also use evalue to filter low value hits from the resulting table using the BlastParser script.
## BLAST otu sequences
blastn -query otus.fasta -out BlastResults.txt -outfmt "6 qseqid qlen sseqid evalue bitscore pident nident mismatch gaps stitle qcovs" -db [BLAST Database] -num_threads 12 -max_target_seqs 1 -best_hit_score_edge 0.05
## Parse the results if necessary
./BlastParser BlastResults.txt
Prepare OTU table for visualization
The OTU table (otutab.txt) is the only document needed to perform alpha and beta diversity statistics. The count data in this matrix is sufficies for the calculations. To perform the alpha and beta diversity analysis, I use R with ggplot and vegan packages. BlastParser script outputs “OTUs.csv” containing two columns (Species and OTU ID).
## Import need data and packages
library(reshape2)
library(ggplot2)
library(vegan)
otu = read.csv("otutable.txt", sep = "\t")
phylogeny = read.csv("OTUs.csv", stringsAsFactors = F)
combined_table = cbind(otu, phylogeny)
row.names(combined_table) = combined_table$X.OTU.ID
## Remove Columns
combined_table$X.OTU.ID = NULL
combined_table$OTUID = NULL
## Aggregate by overlapping Taxonomy
grouped_otus = aggregate(. ~ Species, combined_table, sum)
rownames(grouped_otus) = grouped_otus$Species
grouped_otus$Species = NULL
grouped_otus$Sums = rowSums(grouped_otus)
grouped_otus = grouped_otus[order(grouped_otus$Sums, decreasing = T),]
grouped_otus$Sums = NULL
## Retain top OTUs
x = 15
df_top = grouped_otus[1:x,]
df_not = grouped_otus[x+1:dim(grouped_otus)[1],]
df_not = na.omit(df_not)
Other = colSums(df_not)
df_top = rbind(df_top, "Other" = Other)
Species = rownames(df_top)
## Normalize by ColSums
df_top = apply(df_top, 2, as.numeric)
xdf = as.data.frame(sweep(df_top,2,colSums(df_top),`/`))
rownames(xdf) = Species
## Melt Dataframe
xdf$Species = rownames(xdf)
xdf_m = melt(xdf)
## Using Species as id variables
## Clean up environment
rm(df_not, combined_table, grouped_otus, otu, phylogeny)
Graph Taxonomy
Utilizing the melted otu table, plot the resulting bar charts as both a stacked bar plot and circular images. Both images have custom color schemes added using the scale_fill_manual command. A list of ggplot colors can be found HERE.
# Stacked Bar Plot
p <- ggplot(data=xdf_m, aes(x=variable, y=value, fill=Species))
p + geom_bar(aes(), stat="identity", position="stack") + scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", "lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", "darksalmon", "cyan1")) + theme(legend.position="bottom") + guides(fill=guide_legend(nrow=4)) + xlab("Sample") + ylab("Relative Abundance") +theme(axis.text.y = element_text(colour="grey20",size=12,angle=0,hjust=1,vjust=0,face="plain"), axis.title.y = element_text(colour="grey20",size=15,angle=90,hjust=.5,vjust=.5,face="plain"), axis.text.x = element_text(colour="grey20",size=12,angle=0,hjust=0.5,vjust=0,face="bold"),axis.title.x = element_text(colour="grey20",size=15,angle=0,hjust=.5,vjust=.5,face="plain"))
# Ciruclar Plot
p = ggplot(xdf_m, aes(x=variable, y=value, fill=Species)) +geom_bar(stat = "identity")
pies = p + coord_polar("x", start = 0)
pies+ theme(axis.ticks = element_blank(),
panel.grid = element_blank()) + xlab("") + ylab("")
And your all set! Good luck processing that data!
Comments
Post a Comment